Doctoral Thesis: Current-Induced Dynamics of Easy-Plane Antiferromagnets

Friday, December 16
1:00 pm - 2:30 pm

MIT 4-237

Pengxiang Zhang


Antiferromagnetic memory devices are expected to be very fast, stable, dense and energy-efficient, making them promising for the next generation non-volatile random-access memory. However, in antiferromagnets, it used to be challenging to accurately understand the current-induced dynamics, especially the spin-orbit-torque switching dynamics. To realize a practical antiferromagnetic memory device, we must overcome the challenge. 

In this PhD Thesis Defense, I will introduce our systematic and quantitative study of a model material, collinear easy-plane antiferromagnetic insulator α-Fe2O3 covered by Pt, for non-spin-orbit-torque switching mechanisms, magnon spin transport, and finally, the long-anticipated damping-like-torque switching. And I will also introduce our study about the damping-like-torque switching of a non-collinear easy-plane antiferromagnetic metal Mn3Sn. These studies deepen the scientific understandings of spin-orbit torque dynamics in antiferromagnets, and pave the way to real-life applications of antiferromagnetic memory devices.


  • Date: Friday, December 16
  • Time: 1:00 pm - 2:30 pm
  • Category:
  • Location: MIT 4-237
Additional Location Details:

Thesis Supervisor: Prof. Luqiao Liu