NY Times Conversation with Mildred Dresselhaus: Carbon Catalyst for Half a Century

July 3, 2012

Mildred Dresselhaus - tribute in 1948 Hunter High School year book, NY Times Conversation with Mildred Dresselhaus, July 2, 2012Mildred Dresselhaus, Institute Professor Emerita and faculty member in the Department of Electrical Engineering and Computer Science since 1967 and recipient within the past year of two major awards (Fermi Award and Kavli Prize) for her work in carbon and nanoscience and as a leader in her field, is featured in the New York Times Science section.

In an article by By NATALIE ANGIER, published July 2, 2012, titled "Conversation with Mildred Dresselhaus, Carbon Catalyst for Half a Century," Millie Dresselhaus is introduced: "Mildred Spiewak Dresselhaus, a professor of physics and engineering at the Massachusetts Institute of Technology, walks with a very large carbon footprint, and in her case it’s a good thing." A 1948 photo of Mildred Spiewak (left) from the 1948 Hunter High School yearbook includes the tribute: "Any equation she can solve; Every problem she can resolve. Mildred equals brains plus fun, In math and science, she is second to none." The full article - for convenience, appears below, or see it on the NY Times site.

CAMBRIDGE, Mass. — Mildred Spiewak Dresselhaus, a professor of physics and engineering at the Massachusetts Institute of Technology, walks with a very large carbon footprint, and in her case it’s a good thing.

For more than half a century, Dr. Dresselhaus has studied the fundamental properties of carbon — carbon as graphite, the dark, flaky mineral with which our pencils are pointed, and carbon as liquid, the element with the highest melting point in nature; carbon that is insulator one moment, superconductor the next.

She invented breakthrough techniques for studying individual layers of carbon atoms. She discovered ways to capture the thermal energy of vibrating particles at well-defined “boundaries,” and then to use that heat to make electricity.

She devised carbon fibers that are stronger than steel at a fraction of steel’s weight. Her research helped usher in the age of nanotechnology, the wildly popular effort to downsize electronic circuits, medical devices and a host of other products to molecular dimensions.

Dr. Dresselhaus recently won the 2012 Kavli Prize in Nanoscience, a $1 million honor that matches the purse size and Scandinavian provenance of a Nobel, if not quite the status. The new award joins a very long list of laurels, among them the National Medal of Science, the Enrico Fermi Award, the presidencies of the American Physical Society and the American Association for the Advancement of Science, 28 honorary doctorates and a stint in the Department of Energy under President Bill Clinton.

Dr. Dresselhaus has also been a prominent advocate for women in physics and engineering, disciplines that are still short on high-ranking female faces and that were outright hostile to women when she began her career in the late 1950s. Even before entering science, she was well accustomed to hostility and hard times, having grown up impoverished in a rough part of the Bronx.

Today, at 81, the woman nicknamed the Queen of Carbon still works long hours in the lab, publishes prolifically, gives talks around the world and plays violin and viola in chamber groups. Married to a fellow physicist, Gene Dresselhaus, she is the mother of four and grandmother of five, including a granddaughter who is coming to M.I.T. this fall to study nanotechnology.

[Natalie Angier] I spoke with Dr. Dresselhaus in her trapezoid-shaped office, under the vivid presence of a Venezuelan sunburst tapestry that covered much of one wall.

Your parents were immigrants from Poland, and your father often couldn’t find work. You’ve talked about how as a child you had no toys, sometimes no food and a single set of clothes that your mother washed for you each night. Now, with the Kavli award, you’re a bona fide member of the 1 percent club. How does that feel?

[Mildred Dresselhaus] You know, It’s a funny thing. Being a scientist, you don’t get a big salary, but it’s more than you need. When you’re busy enjoying what you’re doing, you don’t spend a lot of money. I wasn’t expecting prizes.

[Natalie Angier] You were born in Brooklyn. So how did you end up in the Bronx?

[Mildred Dresselhaus]  My older brother was a musical prodigy, and he got a scholarship to the Bronx House Music School. We moved to the Bronx when I was 4 to be close to his music school. Then I got a music scholarship myself, at the age of 6, but that was for a school down in Greenwich Village. I had to take the elevated train and then the subway to get there. I can’t tell you how many times I fell down those subway stairs. I was carrying too much, my violin, my schoolbooks. I would trip and lose my balance.

[Natalie Angier] You were traveling downtown on your own at age 6?

[Mildred Dresselhaus]  The scariest part was coming home and getting off the train in the Bronx, when I had to walk through that dangerous neighborhood. But I survived.

[Natalie Angier]  I want to read this little passage about you, when you were Mildred Spiewak. “Any equation she can solve; every problem she can resolve. Mildred equals brains plus fun. In math and science she’s second to none.”

[Mildred Dresselhaus]  Where did you get that from?

[Natalie Angier] It’s from my mother’s 1948 yearbook for Hunter High School. She was a classmate of yours, although she says she didn’t know you at the time.

[Mildred Dresselhaus]  Hunter High School was a real turning point for me. I found out about its existence through the music school. Nobody I knew had gone to one of these special high schools, and my teachers didn’t think it was possible to get in. But Hunter sent me a practice exam, and I studied what I needed to know to pass the exam. It was an excellent school with excellent teachers.

[Natalie Angier] By the end you were already known as a science and math whiz. Yet you didn’t think a science career was possible.

[Mildred Dresselhaus]  At that time there were only three kinds of jobs commonly open to women: teaching, nursing and secretarial work. I went on to Hunter College thinking I would be an elementary schoolteacher.

[Natalie Angier]  But then you met Rosalyn Yalow, the future Nobel laureate.

[Mildred Dresselhaus]  I took her class in elementary nuclear physics. It was a tiny class, maybe 3 students, maybe 10. She was a real leader and a very domineering person.

[Natalie Angier]  You met her and she said, “You’re going to do this.”

[Mildred Dresselhaus]  She told me I should focus on science. She left the exact science unspecified but said I should do something at the forefront of some area. After that, she was always in my life, writing letters of recommendation for me, keeping up with my progress. She died just a year ago. I was the first speaker at her memorial symposium.

[Natalie Angier]  You studied with other scientific giants, like Enrico Fermi.

[Mildred Dresselhaus]  That was at the University of Chicago, where I did my graduate work, and at the time it was the best university in physics. Fermi was like Rosalyn Yalow in a couple of ways: He had very few students and took a personal interest in all of them. We both lived near the university, and we ended up walking together early in the mornings. He had such a sharp mind. I learned how to think about physics from him.

[Natalie Angier] You did your doctoral research on superconductivity, where electric current flows through a material and the electrons meet almost no resistance, right?

[Mildred Dresselhaus]  Superconductivity helped broaden my professional phase space. When I started my work, it was already known that magnetic fields could quench superconductivity. I found that the transition was not continuous, that superconductivity was initially enhanced in the presence of magnetic fields, then it would suddenly fall off. That was a little surprising, and so my graduate thesis attracted a bit of attention.

[Natalie Angier]  Didn’t you and your husband end up at M.I.T. because it was the one institution without nepotism rules?

[Mildred Dresselhaus]  M.I.T. and I.B.M. both lacked nepotism rules, and both offered us positions. When I came to M.I.T. in 1960, only 4 percent of the students were female. Today it’s about 40 percent of undergraduates. At Lincoln Lab, they had 1,000 men and two women. But we had a very good boss, and he treated us just like everybody else.

[Natalie Angier] What inspired you to study carbon?

[Mildred Dresselhaus]  I thought it was an interesting material and it was amenable to the laboratory capabilities we had, in magneto-optics. I also liked having a problem that was not too popular. I had young children at the time. If one day I had to be at home with a sick child, it wouldn’t be the end of the world.

Everybody else was working on semiconductors. They thought carbon was too hard and not a fruitful area of study. The number of papers published on carbon when I started was essentially zero, and it’s been going up, up, up my whole career.

[Natalie Angier]  You paved the way for research that yielded two Nobel Prizes, for buckyballs in 1996 and carbon nanotubes in 2010. Do you feel a tiny bit slighted at not being among the winners?

[Mildred Dresselhaus]  Not at all. In both cases, they had ideas I missed, and they did great work. I’ve received a lot of recognition for my contributions, and I was a special guest at the Nobel ceremony in 2010.

[Natalie Angier]  How did you manage a high-powered career with four children?

[Mildred Dresselhaus]  A good husband is a vital part of it, somebody who understands what you’re trying to do and encourages it. I also had a good baby sitter. She worked for me for 29 years.