Highly Agile and Robust Robotic Bipedal Locomotion

SHARE:

Event Speaker: 

Jessy Grizzle (U. Michigan)

Event Location: 

32-155

Event Date/Time: 

Tuesday, March 12, 2013 - 4:00pm

Reception to follow.
 
Abstract:
This is roughly a reprise of the 2012 Bode Lecture. The nonlinear control theory in the talk has been approved for a general audience. Dynamic models for bipedal robots contain both continuous and discrete elements, with switching events that are spatially driven by unilateral constraints at ground contact and impulse-like forces that occur at foot touchdown. The complexity of the models has led to a host of ad hoc trial-and-error feedback designs. This presentation will show how nonlinear feedback control methods are providing model-based solutions that also enhance the ability of bipedal robots to walk, run, and recover from stumbles. The talk addresses both theoretical and experimental aspects of bipedal locomotion. Videos of the some of the experiments have been covered in the popular press, bringing feedback control to the attention of the general public.

Biography:
Jessy Grizzle received the Ph.D. in electrical engineering from The University of Texas at Austin in 1983 and in 1984 held an NSF-NATO Postdoctoral Fellowship in Paris, France. Since September 1987, he has been with The University of Michigan, Ann Arbor, where he is a Professor of Electrical Engineering and Computer Science and is the Jerry and Carol Levin Professor of Engineering. He jointly holds sixteen patents dealing with emissions reduction in passenger vehicles through improved control system design. Professor Grizzle is a Fellow of the IEEE and IFAC. He received the Paper of the Year Award from the IEEE Vehicular Technology Society in 1993, the George S. Axelby Award in 2002 and the Control Systems Technology Award in 2003. His work on bipedal locomotion has been the object of numerous plenary lectures and has been featured in The Economist, Wired Magazine, Discover Magazine, Scientific American, CNN, ESPN, and many others.