Research

SHARE:
  • Rahul Sarpeshkar, professor in the MIT Electrical Engineering and Computer Science Department and head of the Analog Circuits and Biological Systems Group in MIT's Research Laboratory of Electronics (RLE) is featured by the Industrial Liaison Program (ILP) at MIT for his work that blends both biological (wet) and electronic analog circuits (dry) in research that could lead to newly engineered immune cells that could detect cancer cells and kill them, for example. Read more.
  • Until now the theoretical and much studied quasiparticle known as the exciton — responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits — has never been observed in action. Now researchers in the Center for EXcitonics in the Research Laboratory of Electronics (RLE) at MIT including EECS professors Marc Baldo and Vladimir Bulovic, and investigators at the City College of New York have imaged excitons' motions directly. Read more.
  • Prof. Henry I. Smith, Emeritus Professor of Electrical Engineering and principal investigator in the Research Laboratory of Electronics (RLE) at MIT, was inducted into the National Academy of Inventors (NAI) at the Academy’s 3rd annual conference on March 7, 2014. Prof. Smith was cited “For innovative contributions to micro and nanofabrication technology and applications.”
  • Researchers at MIT’s Microsystems Technology Laboratory (MTL) including Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering, recent EECS PhD graduate Marcus Yip, EECS graduate student Rui Jin and research scientist Nathan Ickes, together with physicians from Harvard Medical School and the Massachusetts Eye and Ear Infirmary (MEEI), have developed a new, low-power signal-processing chip that could lead to a cochlear implant that requires no external hardware. The implant would be wirelessly recharged -- taking just two minutes -- and would run for about eight hours on each charge. Read more.
  • The Spanish Royal Academy of Engineering presented the "Agustin de Betancourt" award to Professor Tomás Palacios on Nov. 26. This award, the most prestigious given in Spain to an engineer less than 36 years old, recognizes Prof. Palacios’ work on nanotechnologies applied to high frequency electronic devices based on GaN and graphene.
  • Jeffrey H. Shapiro has been elected to the grade of Fellow of SPIE, the International Society for Optics and Photonics. SPIE was founded in 1955 to advance light-based technologies. Shapiro, the Julius A. Stratton Professor of Electrical Engineering in the MIT Electrical Engineering and Computer Science Department is also a Fellow of the American Physical Society, the IEEE, the Institute of Physics, and the Optical Society of America. Read more.
  • Prof. Mildred Dresselhaus, Institute professor emerita and faculty member in the MIT Electrical Engineering and Computer Science and Physics Departments, received the Materials Research Society Von Hippel Award in recognition of her work and close association with Prof. Von Hippel. Read more.
  • Under the direction of EECS professor Jeffrey Shapiro, and senior research scientist Franco Wong - both members of the Research Laboratory of Electronic's (RLE) Optical and Quantum Communications Group and of Vivek Goyal, RLE research scientist and head of the Signal Transformation and Information Representation Group, EECS doctoral student Ahmed Kirmani, working under Goyal, has developed a computational imager that uses one photon per pixel allowing laser rangefinders to infer depth (3D) from a hundredth as much light and produce images from one 900th the light needed. Read more.
  • "There's a very strong need for that computer to turn electrical signals into optical signals very efficiently," Dirk Englund the Jamieson Career Development Assistant Professor in the MIT Electrical Engineering and Computer Science Department explained to Marketplace Tech. Englund was approached to discuss his work in the Quantum Photonics Laboratory, where computer chips made of graphene and silicon are encouraging information to move near the speed of light. Read more.
  • Detecting early-stage malarial infection of blood cells is a diagnostic that has recently come closer to reality through the work of MIT's Anantha Chandrakasan, EECS Department Head, and Subra Suresh, former MIT Dean of Engineering, now president of Carnegie Mellon University. The work, which has been published Aug. 8 in the journal Lab on a Chip, is potentially applicable to detecting other infections and diseases.
  • Mehmet Fatih Yanik, associate professor of electrical engineering and biological engineering at MIT and head of the High-Throughput Neurotechnology Group based in the Research Laboratory of Electronics (RLE) has created his life's work by combining his training in physics and engineering with his passion for understanding the complexities of the human nervous system and how to determine therapeutics for neurological disorders. Read more...
  • James Fujimoto, the Elihu Thomson Professor of Electrical Engineering at MIT has been selected for the 2014 IEEE Photonics Award. The award, which is sponsored by the IEEE Photonics Society, is given in recognition of outstanding achievements in photonics. Prof. Fujimoto is cited “for pioneering the development and commercialization of optical coherence tomography for medical diagnostics.”
  • Dept. Head Anantha Chandraksan has announced the appointment of Prof. Jeffrey H. Lang to the Vitesse Professorship in Electrical Engineering and Computer Science, effective July 1, 2013. The Vitesse Chair was established in 2000 to honor the Vitesse Semiconductor Corporation, a company co-founded in 1984 by former MIT students.
  • Joel Voldman engineers cutting-edge approaches to stem cell signaling, point of care therapeutics, and neuroengineering. In the never-ending mega study of how biological systems work, Joel Voldman’s mission is to understand the most basic interactions between single cells. To achieve that, he applies the power of microfluidics to isolate the actions and behaviors of single cells and the interactions between cells.
  • Read about Tomas Palacios, the Emmanuel E. Landsman Associate Professor of Electrical Engineering and Computer Science at MIT, where he is a principal investigator in the Microsystems Technology Laboratories (MTL) in the July 3, 2013 MIT News Office article by Larry Hardesty titled "High potential - Tomás Palacios investigates use of ‘extreme materials’ in electronics, which could reduce energy consumption and make computers far faster."
  • Jeffrey Shapiro, the Julius A. Stratton Professor of Electrical Engineering working with members of the Optical and Quantum Communications Group of which he is a co-director in the Research Laboratory of Electronics at MIT has demonstrated experimentally the effectiveness of a new quantum communication protocol. The group has shown in a series of papers the system's effectiveness in both security (against passive eavesdropping) and can be used for greater distances than the current quantum key distribution (QKD).
  • CNN recently interviewed Tomas Palacios, Director of the MIT/MTL Center forf Grahene Devices and 2D Systems. Palacios, the Emmanuel E. Landsman Associate Professor of Electrical Engineering and Computer Science, described graphene's unique properties enabling it to conduct electric currents faster than in any other known material. He also provides a view of the potential for graphene's use in the future.
  • Dana Weinstein, the Steven G. ('68) and Renee Finn Career Development Assistant Professor of Electrical Engineering and Computer Science, and Laura Popa, a graduate student in physics at the MIT Microsystems Technology Laboratory (MTL) have developed a new method for manufacturing hardware-based radio-signal filtration. Their work should improve filtration performance while enabling 14 times as many filters per chip.
  • EECS professor Muriel Medard, principal investigator in the Research Laboratory of Electronics (RLE) has teamed with EECS graduate student Ulric Ferner and Bell Labs researcher Emina Sojanin to develop a new technique to cut down on wasteful storage practices, especially of video content, in large data centers. Their work has been reported in the April issue of Technology Review.
  • A new mechanism that could help explain the remarkable sensitivity and exquisite frequency selectivity of our sense of hearing has been discovered by Dennis Freeman, Professor of Electrical Engineering and Research Laboratory of Electronics (RLE) Principal Investigator in the Micromechanics Group, in collaboration with Dr. Roozbeh Ghaffari, post-doctoral associate in the RLE.
  • President Barack Obama met Thursday, March 28, in the Oval Office with the six U.S. recipients of the 2012 Kavli Prizes — including MIT’s Mildred S. Dresselhaus, Ann M. Graybiel and Jane X. Luu. Obama and his science and technology advisor, John P. Holdren, received the scientists to recognize their landmark contributions in nanoscience, neuroscience and astrophysics, respectively. Read more...
  • Building an effective Photovoltaic cell (PV) that both collects enough solar energy and carries the charge efficiently has held back the use of quantum dots despite their relative ease of production. Read more.
  • Researchers in the laboratory of Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering and head of the MIT Department of Electrical Engineering and Computer Science, have developed a Quad HD TV chip which has already demonstrated a fourfold increase in TV screen resolution. The new MIT Quad HD TV chip is being presented this week at the International Solid State Circuits Conference in San Francisco.
  • Researchers in the lab of Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering, including Rahul Rithe, a graduate student in MIT’s Department of Electrical Engineering and Computer Science, have developed a chip which can perform professional quality enhancements of photographs quickly and without draining power on smartphone and digital cameras--cutting out the need for added energy- and time-consuming computational photography systems.
  • Researchers at the High Throughput Neurotechnology Group in the Research Laboratory of Electronics (RLE) have built an automated system that can rapidly produce 3-D, micron-resolution images of thousands of zebrafish larvae and precisely analyze their physical traits. The system, described in the Feb. 12 edition of Nature Communications, offers a comprehensive view of how potential drugs affect vertebrates, says Professor Mehmet Fatih Yanik, senior author of the paper.