In the Media

  • June 18, 2014
    Working with members of the Quantum Photonics Laboratory (QPL) under the direction of EECS assistant professor Dirk Englund, principal author Hannah Clevenson, EECS graduate student and Pierre Desjardins and Xuetao Gan have developed an optical gas sensor that provides an extremely sensitive and compact way to detect very small amounts of target molecules of gas before they disperse. Read more.
  • May 28, 2014
    Vladimir Bulovic, the Fariborz Maseeh Professor of Emerging Technology and associate dean for innovation in MIT’s School of Engineering, with MIT professor of chemistry Moungi Bawendi and graduate students Chia-Hao Chuang and Patrick Brown have developed new quantum dot photovoltaic cells that demonstrate significant efficiency in solar cells with no need for high temperature or vacuum conditions to operate -- or to be produced. Read more.
  • April 29, 2014
    As MIT launches into the construction of a new nano center in the heart of its campus (becoming the new building 12), the plans for this exciting new center and the people who will lead these efforts are highlighted in several MIT News Office articles including a video featuring Vladimir Bulovic, Associate Dean for Innovation, and Fariborz Maseeh (1990) Professor of Emerging Technology. Read more.
  • April 16, 2014
    Until now the theoretical and much studied quasiparticle known as the exciton — responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits — has never been observed in action. Now researchers in the Center for EXcitonics in the Research Laboratory of Electronics (RLE) at MIT including EECS professors Marc Baldo and Vladimir Bulovic, and investigators at the City College of New York have imaged excitons' motions directly. Read more.
  • April 7, 2014
    Imagine being curious enough as an 11 year old — on seeing your babysitter's mysterious calculus textbook symbols — to jump grades in order to leap several years ahead in math? Scott Aaronson, associate professor of electrical engineering and computer science and affiliate with the Computer Science and Artificial Intelligence Lab (CSAIL), has always had a way of thinking beyond -- now looking for the truths in computational complexity, and consequently influencing the way computation is perceived and executed in the future. Read more.
  • March 12, 2014
    Prof. Henry I. Smith, Emeritus Professor of Electrical Engineering and principal investigator in the Research Laboratory of Electronics (RLE) at MIT, was inducted into the National Academy of Inventors (NAI) at the Academy’s 3rd annual conference on March 7, 2014. Prof. Smith was cited “For innovative contributions to micro and nanofabrication technology and applications.”
  • December 26, 2013
    The Spanish Royal Academy of Engineering presented the "Agustin de Betancourt" award to Professor Tomás Palacios on Nov. 26. This award, the most prestigious given in Spain to an engineer less than 36 years old, recognizes Prof. Palacios’ work on nanotechnologies applied to high frequency electronic devices based on GaN and graphene.
  • November 22, 2013
    "There's a very strong need for that computer to turn electrical signals into optical signals very efficiently," Dirk Englund the Jamieson Career Development Assistant Professor in the MIT Electrical Engineering and Computer Science Department explained to Marketplace Tech. Englund was approached to discuss his work in the Quantum Photonics Laboratory, where computer chips made of graphene and silicon are encouraging information to move near the speed of light. Read more.
  • July 5, 2013
    Joel Voldman engineers cutting-edge approaches to stem cell signaling, point of care therapeutics, and neuroengineering. In the never-ending mega study of how biological systems work, Joel Voldman’s mission is to understand the most basic interactions between single cells. To achieve that, he applies the power of microfluidics to isolate the actions and behaviors of single cells and the interactions between cells.
  • July 3, 2013
    Read about Tomas Palacios, the Emmanuel E. Landsman Associate Professor of Electrical Engineering and Computer Science at MIT, where he is a principal investigator in the Microsystems Technology Laboratories (MTL) in the July 3, 2013 MIT News Office article by Larry Hardesty titled "High potential - Tomás Palacios investigates use of ‘extreme materials’ in electronics, which could reduce energy consumption and make computers far faster."
  • May 21, 2013
    Jeffrey Shapiro, the Julius A. Stratton Professor of Electrical Engineering working with members of the Optical and Quantum Communications Group of which he is a co-director in the Research Laboratory of Electronics at MIT has demonstrated experimentally the effectiveness of a new quantum communication protocol. The group has shown in a series of papers the system's effectiveness in both security (against passive eavesdropping) and can be used for greater distances than the current quantum key distribution (QKD).
  • May 20, 2013
    CNN recently interviewed Tomas Palacios, Director of the MIT/MTL Center forf Grahene Devices and 2D Systems. Palacios, the Emmanuel E. Landsman Associate Professor of Electrical Engineering and Computer Science, described graphene's unique properties enabling it to conduct electric currents faster than in any other known material. He also provides a view of the potential for graphene's use in the future.
  • April 3, 2013
    A new mechanism that could help explain the remarkable sensitivity and exquisite frequency selectivity of our sense of hearing has been discovered by Dennis Freeman, Professor of Electrical Engineering and Research Laboratory of Electronics (RLE) Principal Investigator in the Micromechanics Group, in collaboration with Dr. Roozbeh Ghaffari, post-doctoral associate in the RLE.
  • April 1, 2013
    President Barack Obama met Thursday, March 28, in the Oval Office with the six U.S. recipients of the 2012 Kavli Prizes — including MIT’s Mildred S. Dresselhaus, Ann M. Graybiel and Jane X. Luu. Obama and his science and technology advisor, John P. Holdren, received the scientists to recognize their landmark contributions in nanoscience, neuroscience and astrophysics, respectively. Read more...
  • March 25, 2013
    Building an effective Photovoltaic cell (PV) that both collects enough solar energy and carries the charge efficiently has held back the use of quantum dots despite their relative ease of production. Read more.
  • February 20, 2013
    Researchers in the laboratory of Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering and head of the MIT Department of Electrical Engineering and Computer Science, have developed a Quad HD TV chip which has already demonstrated a fourfold increase in TV screen resolution. The new MIT Quad HD TV chip is being presented this week at the International Solid State Circuits Conference in San Francisco.
  • February 11, 2013
    Timothy Lu, MIT assistant professor of electrical engineering and computer science and biological engineering working with members of the Synthetic Biology Group in the MIT Research Laboratory of Electronics (RLE), has successfully created new synthetic biology circuits that combine memory and logic allowing potential control over production of cells to generate biofuels, drugs or other useful compounds. Read more...
  • February 1, 2013
    Trying to build a new circuit that would use an emerging technology called compressed sensing has taken on a renewed focus under the work of members of the Electrical Engineering and Computer Science Department at MIT including EECS graduate student Omid Abari. With researchers in the Research Laboratory of Electronics at MIT (RLE) and in the Computer Science and Artificial Intelligence Lab (CSAIL) Obari is seeking to balance theory with chip building realities using new evaluation algorithms to allow creation of the ideal circuit.
  • January 18, 2013
    In March 2011, Scott Aaronson, MIT associate professor in the Electrical Engineering and Computer Science Department (EECS) and principal investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) working with EECS graduate student Alex Arkhipov proposed the creation of a first step towards quantum computing -- an optical experiment that would demonstrate the feasibility of quantum computing. Four distinct research groups, which undertook Aaronson and Arkhipov's proposed experiment in December 2012, are now reporting the results.
  • January 3, 2013
    Judy Hoyt, professor of electrical engineering and computer science in the MIT EECS Department, has teamed with colleagues in the Microsystems Technology Laboratories (MTL) to design a new kind of p-type transistor using germanium (not silicon). The team has successfully demonstrated that the p-type transistor can achieve speeds twice as fast as current experimental p-type transistors and nearly four times as fast as the best commercially produced p-type transistors.
  • December 21, 2012
    EECS researchers including professors Vladimir Bulovic, Jing Kong and Mildred Dresselhaus and postdoctoral associate Hyesung Park and graduate student Joel Jean have joined MIT colleagues including associate professor of materials science and engineering Silvija Gradecak and postdoctoral associate Sehoon Chang, to produce a new kind of flexible and solar cell based on graphene paired with nanowires and quantum dots. This work could rival the current use of silicon crystals or indium tin oxide (ITO) and is predicted to be scalable for alternative use to the silicon or ITO models.
  • December 10, 2012
    A team from the MIT Microsystems Technology Laboratories (MTL) including Jesús del Alamo, the Donner Professor of Science in MIT’s Department of Electrical Engineering and Computer Science (EECS), EECS graduate student Jianqian Lin, and Dimitri Antoniadis, the Ray and Maria Stata Professor of Electrical Engineering have used indium gallium arsenide to build nanometer-sized metal-oxide semiconductor field-effect transistors (MOSFETs) that can outpace silicon providing the smallest non-silicon transistors yet.
  • November 20, 2012
    Luis Velásquez-García, a principal research scientist at MIT’s Microsystems Technology Laboratories, and his group have created a new system for spinning nanofibers—one that should offer significant productivity increases while drastically reducing power consumption. They will be presenting this work at the International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications in December.
  • October 17, 2012
    Calling it a glimpse into the future, technology news website CRN has hailed MIT EECS/CSAIL faculty and the new Wireless@MIT center as the source for seven new technologies that will impact (favorably) our daily lives. Read more...
  • August 23, 2012
    Molybdenum-Disulfide (MoS2), like Graphene, is a one-molecule-thick material. But, MIT researchers including EECS Professors Tomas Palacios and Jing Kong have been able to produce complex electronic circuits from MoS2, a material that could have many more applications than graphene. This work is now reported in the journal Nano Letters.