Doctoral Thesis: Information Extraction with Neural Networks


Event Speaker: 

Ji Young Lee

Event Location: 


Event Date/Time: 

Tuesday, May 2, 2017 - 4:00pm


Electronic health records (EHRs) have been widely adopted, and are a gold mine for clinical research. However, EHRs, especially their text components, remain largely unexplored due to the fact that they must be de-identified prior to any medical investigation. Existing systems for de-identification rely on manual rules or features, which are time-consuming to develop and fine-tune for new datasets. In this thesis, we propose the first de-identification system based on artificial neural networks (ANNs), which achieves state-of-the-art results without any human-engineered features. The ANN architecture is extended to incorporate features, further improving the de-identification performance. Under practical considerations, we explore transfer learning to take advantage of large annotated dataset to improve the performance on datasets with limited number of annotations. The ANN-based system is publicly released as an easy-to-use software package for general purpose named-entity recognition as well as de-identification. Finally, we present an ANN architecture for relation extraction, which ranked first in the SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific articles (subtask C).


Thesis Supervisor: Peter Szolovits